INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal rectangular flat faced monoaccelerator oscilloscope tube primarily intended for use in inexpensive oscilloscopes and read-out devices.

QUICK REFERENCE DATA

Accelerator voltage		٧ _{g2, g4, g5 (٤)}	2000	V
Display area		5 7 5 7 5	100 x 80	mm^{2}
Deflection coefficient				
horizontal		M _×	23	V/cm
vertical	1	M _V	13,5	V/cm

SCREEN

	colour	persistence
D14-250GH	green	medium short

Useful screen dimensions

Useful scan

horizontal vertical

Spot eccentricity in horizontal and vertical directions

HEATING

Indirect by a.c. or d.c.; parallel supply

Heater voltage

Heater current

MECHANICAL DATA

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Net mass

approx. 1000 g

Base

14-pin all glass

100 x 80 mm²

100 mm

80 mm

7 mm

6,3 V

300 mA

D14-250GH

Dimensions and connections

See also outline drawing

Overall length (socket included) \leq 333 mm

Face dimensions ≤ 121 x 100 mm

Accessories

Socket (supplied with tube) type 55566

➤ Mu-metal shield type 55590

FOCUSING electrostatic

DEFLECTION double electrostatic

x-plates symmetrical y-plates symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam; hence a low impedance deflection plate drive is desirable.

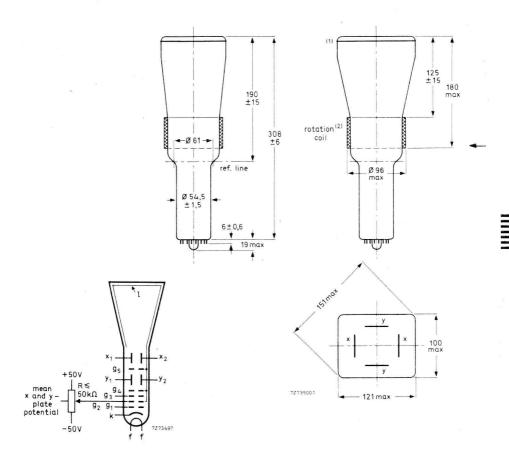
electron beam; hence a low impedance deflection plate drive is desirable.

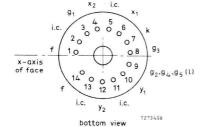
Angle between x and y-traces $90^{\circ} \pm 1^{\circ}$

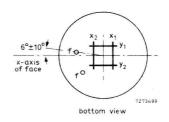
Angle between x-trace and horizontal axis of the face see footnote

CAPACITANCES

x ₁ to all other elements except x ₂	$C_{\times 1(\times 2)}$	4,5	pF
x2 to all other elements except x1	C _{×2(×1)}	4,5	pF
y ₁ to all other elements except y ₂	C _{y1(y2)}	3,5	pF
y2 to all other elements except y1	C _{y2(y1)}	3	pF
x ₁ to x ₂	c_{x1x2}	2	pF
y ₁ to y ₂	C _{y1y2}	1,1	pF
Control grid to all other elements	C _{g1}	6	pF
Cathode to all other elements	c_k	5	pF


Note


The tube is provided with a rotation coil, concentrically wound around the tube neck, enabling the alignment of the x-trace with the mechanical x-axis of the screen. The coil has 1000 turns and a resistance of 400 Ω . Under typical operating conditions, max. 30 ampere-turns are required for the max. rotation of 5°. This means the required current is max. 30 mA at a required voltage of 12 V.



DIMENSIONS AND CONNECTIONS

Dimensions in mm

- (1) The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2 mm.
- (2) The coil is fixed to the envelope by means of adhesive tape.

TYPICAL OPERATION

	TYPICAL OPERATION					
	Conditions (note 1)					
	Accelerator voltage	V _{g2} , g4, g5(ℓ)		2000	V	
	Astigmatism control voltage	$\Delta V_{g2, g4, g5(\ell)}$		$\pm~50$	V	(note 2)
	Focusing electrode voltage	V_{q3}	220 to	370	V	
	Control grid voltage for visual extinction of focused spot	V_{g1}	€	-65	V	
	Performance					
	Useful scan horizontal vertical		\geqslant		mm mm	
	Deflection coefficient horizontal	M_X	<	25	V/cm V/cm V/cm	
-	vertical	My	<		V/cm	
	Line width	1.w.	\approx	0,35	mm	(note 3)
	Deviation of linearity of deflection		\leq	2	%	(note 4)
	Geometry distortion		see note 5			
	Grid drive for 10 μA screen current		\approx	10	V	
	LIMITING VALUES (Absolute maximum rating syst	tem)				
	Accelerator voltage	V _{g2} , g4, g5(ℓ)	max. min.	2200 1500		
	Focusing electrode voltage	V_{g3}	max.	2200	V	
	Control grid voltage	$-V_{g1}$	max. min.	200	V V	
	Cathode to heater voltage positive negative	v_{kf} $-v_{kf}$	max. max.	125 125		

We

20 V

3 mW/cm²

max.

max.

Notes see page 5.

Grid drive, average

Screen dissipation

NOTES

- 1) The mean x-plate potential and the mean y-plate potential should be equal to $Vg2, g4, g5(\ell)$ (with astigmatism control voltage set to zero).
- When putting the tube into operation the astigmatism control voltage should be adjusted only once for optimum spot size in the centre of the screen. The control voltage will be within the stated range, provided the conditions of note 1 are adhered to.
- 3) Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current I $_{\rm p}$ = 10 μ A.

As the construction of the tube does not permit a direct measurement of the beam current, this current should be determined as follows:

- a) under typical operating conditions, apply a small raster display (no overscan), adjust V_{g1} for a beam current of approx. 10 μ A and adjust V_{g3} and V_{g2} , g4, $g5(\ell)$ for optimum spot quality at the centre of the screen.
- b) under these conditions, but without raster, the deflection plate voltages should be changed to: $V_{y1} = V_{y2} = 2000 \text{ V}$; $V_{x1} = 1300 \text{ V}$; $V_{x2} = 1700 \text{ V}$, thus directing the total beam current to x_2 .

Measure the current on x_2 and adjust $V_{\phi 1}$ for $I_{x2} = 10 \,\mu\text{A}$,

c) set again for the conditions under a), without touching the V_{g1} control.

The screen current of the resulting raster display is now 10 μA .

- d) focus optimally in the centre of the screen (do not adjust the astigmatism control) and measure the line width.
- 4) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- 5) A graticule consisting of concentric rectangles of 95 mm x 75 mm and 93 mm x 73 mm is aligned with the electrical x-axis of the tube. With optimum correction potentials applied a raster will fall between these rectangles.

