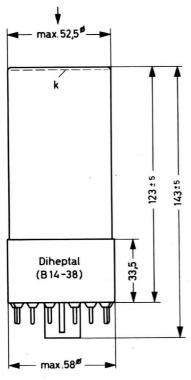


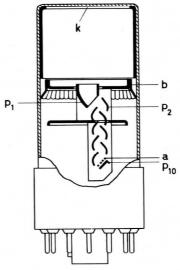
XP 1000 XP 1003 XP 1001 XP 1004 XP 1002 XP 1005

10stufige FOTOVERVIELFACHER

mit 44 mm nutzbarem Fotokatoden-Durchmesser

XP 1000 blauempfindlich blauempfindlich, zur Szintillations-Spektrometrie von Gamma-Strahlung XP 1001 blau-grün-gelb-orange-empfindlich XP 1002

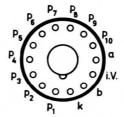

blau-grün-gelb-orange-empfindlich, mit UV-durchlässigem Quarzfenster XP 1003


XP 1004 blauempfindlich. mit UV-durchlässigem Quarzfenster

rot- und infrarotempfindlich XP 1005

Abmessungen in mm:

Innerer Aufbau:



Zubehör:

Fassung FE 1001 56 128 Abschirmung

Einbaulage:

beliebig

Тур	XP 1000	XP 1001 ²)
<u>Fenster</u> : Anordnung Ausführung Material	frontal optisch plan Hartglas B 40	
<u>Fotokatode</u> : Anordnung Ausführung Durchmesser Material	auf Fensterinnenseite halbdurchlässig, plan min. 44 mm SbCs	
Verlauf der spektr. Empfindlichkeit Maximum der spektr. Empfindlichkeit Empfindlichkeit (t _{ugb} =25°C)	A-Typ (S 11) 420 ± 30 nm	
bei Farbtemp. 2850 $^{ m OK}$ $^{ m 3}$) ${ m s_k}$ $({ m \mu A}/{ m \ell m})$ bei Wellenlänge maxi-maler Empfindlichkeit ${ m s_k}$ $({ m mA/W})$	70 (≧ 40) 60	80 (≧ 70) 65
<u>Vervielfachersystem und Anode</u> : Anzahl der Dynoden Material	10 AgMgOCs	
$\begin{array}{lll} \text{Anodenempfindlichkeit} & s_{a} \; (\text{A}/\ell\text{m}) \\ (\text{U}_{\text{B}}=1800\text{V}, \text{SpgsVert.A}) & \\ \text{Anodendunkelstrom} & 5) & \text{I}_{0} \; (\mu\text{A}) \\ (\text{t}_{\text{ugb}}=25^{\text{O}}\text{C}, \text{SpgsVert.A}) & \\ & \text{bei s}_{a} \; (\text{A}/\ell\text{m}) \end{array}$	700 (≥ 250) 700 (≥ 400) 0,015 ($\leq 0,05$) 100	
Proportionalität (U _B =1800V) ⁶) bei SpgsVert. A bis I _a = mA bei SpgsVert. B bis I _a = mA Anodenstromimpuls ⁷)	30 100	30
$ \begin{array}{lll} (U_B=1500V,SpgsVert.B) \\ & \text{Anstiegszeit} & \text{(ns)} \\ & \text{Laufzeitdifferenz} & \text{8}) & \text{(ns)} \\ & \text{Gesamtlaufzeit} & \text{(ns)} \end{array} $	4 4 40	
Kapazität Anode/Dynode p_{10} $C_{a/p10}$ (pF) Anode gegen alles C_{a} (pF)	3 5	
Bemerkungen:		Energieauflösung $(1^3/_4$ " x 2" NaJ, Cs 137, 661 keV) 8,5 (\leq 9) %

XP 1002	XP 1003	XP 1004	XP 1005	
		ntal		
Hartglas B 40		h plan arz	Hartglas B 40	
		rinnenseite ässig, plan		
min. 44 mm				
T-Typ (S 20)	TU-Typ	SbCs U-Typ (S 13)	Ag0Cs C-Typ (S 1)	
	± 30 nm	400 ± 30 nm	800 ± 100 nm	
150 (≧ 110)		70 (≧ 40)	20 (\frac{\geq}{2} 15) \frac{4}{})	
70 (bei 700 nm: 12)		60	2	
$\begin{array}{c} 10\\ \mathbf{AgMg}0\mathbf{Cs} \end{array}$				
400	(≧ 100)	700 (= 250)	100 (≧ 20)	
	0,015 (= 0,05)		≦ 10	
	60	100	20	
	30 100		5 10	
4 4				
40				
3 5				
	I		Territoria de la companya della companya della companya de la companya della comp	

XP 1000 XP 1003 XP 1001 XP 1004 XP 1002 XP 1005

Grenzdaten: (absolute Werte)

```
max. 1800 V
U_{\mathbf{B}}
I<sub>a</sub> (außer XP 1005) =
                                                  1 mA 9)
                                        max.
                                                30 µA 9)
I (XP 1005)
                                        max.
                                               500 V
U_{p1/k}
                       = min. 120 V; max.
                                 80 V; max.
                                               300 V
                       = min.
Upn+1/pn
                                               300 V 10)
                       = min.
                                 80 V; max.
U_{a/p10}
                                               +65 °C
                                        max.
tugb
```

B

¹⁾ Zum Schutz gegen magnetische oder elektrostatische Störfelder soll die Röhre mit einem Abschirmzylinder (57 + 1 mm Innendurchmesser, 90 ± 1 mm Länge, 1,0 mm Wandstärke, Typ 56 128) umgeben werden.

²⁾ Für XP 1001 gilt statt Spgs.-Vert. A bzw. B jeweils Spgs.-Vert. A'.

³⁾ mit Wolframfadenlampe

⁴⁾ Für den Infrarot-Bereich ist die Empfindlichkeit s_k IR = 3 (≥ 1,4) μA/tm, gemessen bei einer Farbtemperatur von 2850 oK mit einer Wolframfadenlampe und einem Infrarot-Filter Corning 2450, Schmelze 1613, Dicke 2,61 mm.

⁵⁾ Fällt beim Einbau der Röhre volles Tageslicht auf die Fotokatode, so kann der Dunkelstrom stark ansteigen; er kehrt während des Betriebes langsam auf seinen ursprünglichen Wert zurück.

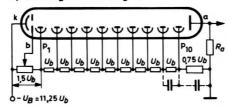
⁶⁾ Bis zu den angegebenen Werten herrscht Proportionalität zwischen Anodenstrom und Beleuchtung.

⁷⁾ bei Beleuchtung der Fotokatode mit sehr kurzen Lichtimpulsen

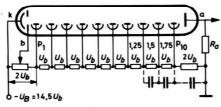
⁸) bei punktförmiger Beleuchtung der Katodenmitte und des Katodenrandes

⁹⁾ Mittelwert

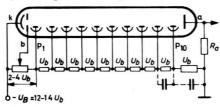
¹⁰⁾ Der Spannungsabfall an R_a ist zu berücksichtigen.

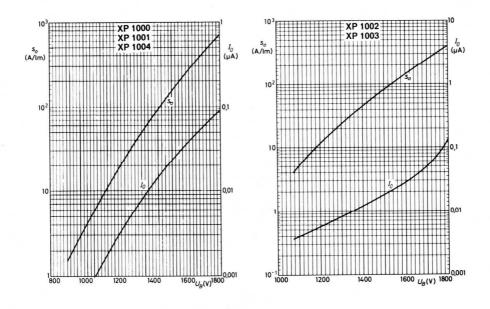

Betriebsdaten und -hinweise:

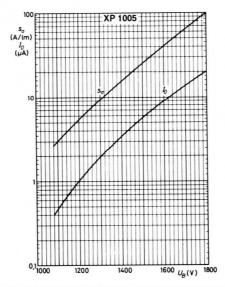
Die Speosespannund für die einzelnen Dynoden kann durch ohmsche Spannungsteilung aus der Gesamtspeisespannung \mathbb{U}_B erzeugt werden; der Querstrom des Spannungsteilers soll für eine Stabilität von 1 %etwa 100mal so groß wie der Anodenstrom des Fotovervielfachers gewählt werden. Bei Lichtimpulsbetrieb und ausreichender kapazitiver Überbrückung der letzten Stufen ist ein geringerer Querstrom ausreichend.


Für Gamma-Spektrometrie mit XP 1001 wird eine Gesamtspeisespannung von etwa 1100 V (Spgs.-Vert. A') empfohlen; man erhält die beste Arbeitsweise bei $\rm U_{p1/k}=4~U_b$.

Die Spannungverteilung A (auch A') ergibt die höchste Stromverstärkung, Spannungsverteilung B ergibt höhere Spitzenströme und einen größeren Proportionalitätsbereich.


Spannungsverteilung A




Spannungsverteilung B

Spannungsverteilung A' (XP 1001)

