IONISATION GAUGE.

GENERAL.

The gauge is in the form of a bright tungsten filament triode with a lead glass (L1) stem tube and is designed to measure pressures below one micron of mercury.

CONNECTIONS AND VALVE DIMENSIONS

FILAMENT

V_f	5 nominal	v
I_f	0.66 approx	Α

RATINGS

V_a	250	max	v
Pa	22	max	w
Pg	6	max	w
Îa+g	100	max	mA
μ	9	арргож	

TYPICAL OPERATING DATA

The gauge must be thoroughly outgassed each time the electrodes have been exposed to the atmosphere.

- (a) Bake at 350°-380°C for 5 mins.
- (b) Connect anode and grid strapped, to +H.T. supply (200-240V).
- (c) Adjust current by varying filament voltage (7-8V) until combined anode+grid dissipation is 20W approx. Maintain for 10 mins.

Grid (accelerator) potential +100VAnode (collector) -10VSpace Current 2 mASensitivity (for air) $14\mu\text{A}$ per micron

Obtain correct space current by adjusting filament voltage (5V approx.).

The collector current varies linearly with pressure up to about one micron (0.001 mm. $H_{\mbox{\scriptsize g}}).$

Notes. The calibration is for dry air only.

To obtain maximum life, the pressure should be kept below one micron while the gauge filament is hot.